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Abstract. The many-body dynamics of interacting electrons in condensed matter and quantum chem-
istry is often studied at the quasiparticle level, where the perturbative diagrammatic series is partially
resummed. Based on Hedin’s equations for self-energy, polarization, propagator, effective potential, and
vertex function, dressed (skeleton) Feynman diagrams are enumerated. Such diagram counts provide useful
simple checks for extensions of the theory for future realistic simulations.

PACS. 71.10.-w Theories and models of many-electron systems – 24.10.Cn Many-body theory – 11.10.Gh
Renormalization

1 Introduction

Current research in electronic properties of molecules,
nanocomponents, and solids has gone far beyond the
mean-field density-functional description. Many-body
methods are employed routinely, at the level of quasipar-
ticles, to describe excitations accurately [1–3]. Propaga-
tors and interactions are renormalized to obtain an effec-
tive theory of weakly interacting quasiparticles. This is
achieved by infinite resummations of Feynman diagrams,
that are brought to a smaller class of skeleton diagrams [4].
The reduction in number should correspond to better an-
alytic behavior in space-time of the individual dressed di-
agrams, as it occurs in random-phase or ladder resumma-
tions [5].

In this report, we extend the method proposed in ref-
erence [6] to the enumeration of skeleton Feynman dia-
grams within several renormalization schemes for the ex-
act many-body theory and its GW approximation [1–3].
Enumeration of Feynman diagrams is useful in various
contexts: as a check for any diagrammatic approach to the
many-body problem in realistic dimensions, for graph and
knot theory, and in statistical mechanics. For example, di-
agram counting allowed to establish the exact solution of
a model of 1D electrons in a random potential [7,8]; this
solution exhibits non-Fermi-liquid properties that are en-
countered in models for high-Tc superconductivity [9,10].
The study of band random matrices is relevant for quan-
tum chaos and the theory of transport in presence of disor-
der: spectral density correlators were evaluated by count-
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ing planar Feynman diagrams [11]. In statistical mechan-
ics, the enumeration of planar Feynman diagrams of ma-
trix models [12] was used for the enumeration of configu-
rations in models of two-dimensional random lattices [13],
in the classification of knots [14], in the four-colour prob-
lem [15]. Finally, the asymptotics of diagram enumeration
is important to estimate convergence properties of renor-
malized expansions of field-theoretical models [16–18].

We take as our starting point the standard formula-
tion of the many-body problem of N interacting fermions
provided by the set of five Hedin’s equations [2,3,19,20]
for the propagator G(1, 2), effective potential W (1, 2),
irreducible self-energy Σ(1, 2), irreducible polarization
Π(1, 2), and irreducible vertex Γ (1; 2, 3), where 1 is
a shorthand notation for a full space-time coordinate
(x1, t1).

G (1, 2) = g (1, 2) + g (1, 1′) Σ (1′, 2′)G (2′, 2) (1)

W (1, 2) = v (1, 2) + v (1, 1′)Π (1′, 2′)W (2′, 2) (2)

Σ (1, 2) = iΓ (2′; 1, 1′) G (1′, 2)W (2′, 2) (3)

Π (1, 2) = −2iΓ (1; 2′, 1′)G (2, 2′)G (1′, 2) (4)
Γ (1; 2, 3) = δ (1, 2) δ (1, 3)

+ Γ (1; 2′, 3′)G (1′, 2′)G (3′, 4′)
δΣ (2, 3)
δG (1′, 4′)

.

(5)

Repeated primed space-time variables are understood to
be integrated. g(1, 2) is the Green function of the interact-
ing system in the Hartree approximation, with exact par-
ticle density, so that Hartree-type insertion (tadpoles) are
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Fig. 1. The unique fully dressed skeleton diagrams for self-
energy (left) and polarization (right).

already accounted for. The five exact Hedin’s equations
are formally closed, at the price of a functional derivative.
A different functional closure of Schwinger-Dyson equa-
tions, leading to diagrammatic recursion schemes, was de-
veloped by Pelster et al. [21,22].

The diagrammatic meaning of Hedin’s equations is
simple: equations (1, 2) correspond to Dyson’s equations
that define the proper self-energy and polarization inser-
tions for the propagator and the effective potential, equa-
tions (3, 4) translate the unique skeleton structure [5] of
Σ and Π , shown in Figure 1. Finally, the vertex equa-
tion (5) shows that vertex diagrams arise from self-energy
diagrams, by “pinching” a G line with a vertex (remove
a line G and replace it with GΓG): this follows from the
functional definition of the vertex [6,19,23]. The tremen-
dous difficulty of the vertex equation is avoided in the GW
approximation, where vertex corrections are neglected and
the bare vertex is used in the other equations. The four in-
tegral GW equations that result, are closed and are being
currently used in many-body calculations. The challenge
of including vertex corrections is still open [1,24,25]. In
the present work we take advantage of the simplifications
characteristic of zero space-time dimensions to solve ex-
actly the complete set (1–5).

2 Enumeration of Feynman diagrams

In zero dimension of space and time, the combinatorial
content of Wick’s expansion survives, producing the same
Feynman diagrams in the perturbative expansion of the
correlators as in conventional 3+1 dimensions. The corre-
lators no longer carry space-time labels, and do not cor-
respond to space-time functions. However, they continue
to solve Hedin’s equations, which can indeed be derived
from considerations about the topology of diagrams [4].
Four of Hedin’s equations become algebraic, in terms of
the scalar variables g and v, representing the Hartree prop-
agator and the bare interparticle interaction respectively.
The functional derivative in the equation for the vertex
becomes an ordinary derivative. The five equations read:

G = g + gΣG, W = v + vΠW, (6)
Σ = iGWΓ, Π = i�G2Γ , (7)

Γ = 1 + Γ G2 ∂Σ
∂G . (8)

A useful parameter � is here introduced to count fermion
loops, and replaces the value −2 in Hedin’s equation (4).

In the GW approximation all corrections to the bare ver-
tex are neglected: the approximation Γ = 1 replaces the
exact vertex equation (8).

The perturbative solution of Hedin’s equations in zero
dimension provides numerical coefficients which enumer-
ate the Feynman diagrams for the five correlators involved.
The ordinary perturbation expansion is carried out in the
bare parameters v and g. However, it is often convenient
to expand in different “renormalized” variables, such as
v and G, or W and G, or G,W and Γ . These expansions
count Feynman diagrams where, respectively, the propa-
gator or both the propagator and the potential, or also the
vertex, have been fully renormalized. Such diagrams where
self-energy contributions of various types are resummed,
are called skeleton graphs [4,5]. In this paper we extend
the method of enumeration of bare diagrams developed in
reference [6] to the problem of counting skeleton diagrams.
Different levels of resummations will be considered below,
including a renormalization based on GW correlators.

2.1 x = g2v-expansion

The standard perturbation theory in the bare interaction
v has been studied in d = 0 by various authors, either by
a combinatorial analysis [26], or by the path-integral for-
mulation of the interacting field, which degenerates to an
ordinary integral [27–29]. An approach based on Hedin’s
equations is very convenient to deal with the Hartree prop-
agator g in place of the bare one, and explicit counting
numbers were obtained [6]. It is useful to rederive here
the main equations for the propagator and the vertex.

Here, the natural dimensionless expansion parameter
is x = ig2v. We provide the equation for Z(x) = G/g,
where Z is the renormalization factor due to self-energy
corrections. The algebraic equations (6, 7) yield

�xZ2(x)Γ (x) = 1 − 1
1 − � + �Z(x)

. (9)

The GW approximation (Γ = 1), generates a cubic equa-
tion for ZGW . For the complete theory, we rewrite the
vertex equation (8), in a form [6] where G is traded for g:

Γ (x) = 1 + g2 ∂Σ

∂g
=

1
Z(x)

− 2x
d

dx

1
Z(x)

. (10)

Equations (9) and (10) combine to a closed equation for Z:

2�x2 dZ

dx
= 1 − �xZ(x) − 1

1 − � + �Z(x)
, (11)

with the initial condition Z(0) = 1. The solution as a series
expansion in x provides the number of Feynman diagrams
that contribute to each order to the propagator G

Z(x) = 1 + x + (3 + �)x2 + (15 + 11� + �2)x3 + . . . (12)

The � powers represent the loop contents. For example,
at second order in x, the theory involves 3 diagrams with
no loops, and 1 diagram with one loop; they are shown
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Fig. 2. The four diagrams for G at second order in x.

in Figure 2. Higher-order diagrams are drawn in refer-
ence [30]. By substituting the power series for Z(x) into
equation (10), we obtain the diagram count for the vertex
function:

Γ (x) = 1+x+3 (2 + �)x2+5
(
10 + 9 � + �2

)
x3+. . . (13)

Table 1 reports the total number of vertex diagrams up
to 10th order, obtained by taking � = 1 in the expansion
for Γ (x).

2.2 y = G2v-skeleton expansion

When all self-energy insertions of the propagator are re-
summed, one ends up with Feynman diagrams where the
propagator lines correspond to the exact G, while the in-
teraction lines continue to correspond to the bare v. This
resummation is obtained by using the expansion parame-
ter y = iG2v. It is possible to obtain a closed equation for
the vertex function. First write the self-energy as

Σ = iGWΓ = iG
v

1 − vΠ
Γ =

1
G

yΓ

1 − y�Γ
. (14)

Next evaluate the vertex function in equation (8) by
means of equation (14), and obtain a differential equation
for Γ (y):

2y2Γ
dΓ

dy
= −1 + (1 + 2y�)Γ − yΓ 2(1 + 2� + y�2)

+ y2Γ 3�(� − 1). (15)

This equation must be solved with the initial condition
Γ (0) = 1. The series expansion of the solution counts
skeleton vertex diagrams with dressed propagators and
bare interactions:

Γ (y) = 1 + y + (4 + 3�)y2 + (27 + 31� + 5�2)y3 + . . . (16)

Table 1 lists the total number of these diagrams up to
order n = 10, by taking � = 1 in the expansion for Γ (y),
as was done above.

The enumeration of skeleton diagrams of the polar-
ization Π = i�G2Γ (y) coincides with that of Γ (y). The
skeleton expansion of Σ results from equation (14):

Σ/iGv = 1 + (1 + �)y + (4 + 5� + �2)y2

+ (27 + 40� + 14�2 + �3)y3 + . . . (17)

In the ordinary perturbative (x) expansion, Π and Σ share
the diagram counting [6]. In contrast, this property is lost
in the y expansion at hand.

The removal of loops from G2v enumerations is ob-
tained by setting � = 0, and selects diagrams with dressed
propagators and intersecting potential arches. These di-
agrams arise in the evaluation of the average self energy
for a single particle in a white-noise external field [31].
Indeed equation (15) with � = 0 coincides with equa-
tion (18) of reference [31]. The asymptotic enumeration
of such graphs was also considered by Suslov [32], in the
study of Anderson’s localization of a particle in a random
potential.

The G2v-expansion of Σ is interesting for the theory
of the Luttinger-Ward Φ-functional [33,34]. By closing all
Σ[G, v] skeleton graphs with a G line, and dividing each
one by the number of G lines it contains, one obtains a
functional with the property of yielding the self-energy
and the reducible polarization:

Σ(1, 2) =
δΦ[G, v]
δG(2, 1)

, Π̃(1, 2) = −2
δΦ[G, v]
δv(2, 1)

. (18)

In d = 0, the functional Φ[G, v] turns into an ordinary
function of y = iG2v:

Φ(y) =
1
2

∫ y

0

dy′ Γ (y′)
1 − �y′Γ (y′)

=
y

2
+ (1 + �)

y2

4
+ (4 + 4� + �2)

y3

6
+ . . . (19)

This last expression provides the appropriate diagram
counting and fractional weights for Φ(y) in any dimen-
sion.

2.3 z = G2W-skeleton expansion

Resummation of both self-energy and polarization inser-
tions leads to skeleton diagrams with exact propagators G
and interactions W . Here, the natural expansion parame-
ter is z = iG2W . The parameter z is linked as follows

z = iG2 v

1 − i�vΓG2
=

y

1 − �yΓ
(20)

to the parameter y = iG2v of the previous section. Inver-
sion yields y = z [1 + �zΓ (z)]−1. By entering this relation
into the differential equation (15) for Γ (y), which is now
viewed as a function of z, we obtain

z2 dΓ (z)
dz

=
1 − Γ (z) + zΓ 2(z) + 2�z2Γ 3(z)

� − (2 + �)Γ (z) − 3z�Γ 2(z)
. (21)

The appropriate series expansion counts G2W -dressed
vertex diagrams:

Γ (z) = 1 + z + 2 (2 + �) z2 + (27 + 22�) z3 + . . . (22)

Table 1 lists the total number of these Γ (z) diagrams up
to order n = 10. Both Σ = iGWΓ (z) and Π = i�G2Γ (z)
have the same total G2W -counting numbers as the vertex.
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Table 1. The number of nth-order skeleton diagrams for the vertex function in the five renormalization schemes considered in
the text.

n 1 2 3 4 5 6 7 8 9 10
Γ (x) 1 9 100 1323 20 088 342 430 6 461 208 133 618 275 3 006 094 768 73 139 285 178
Γ (y) 1 7 63 729 10 113 161 935 2 923 135 58 547 761 1 286 468 225 30 747 331 223
Γ (t) 1 6 52 602 8223 128 917 2 273 716 44 509 914 957 408 649 22 449 011 336
Γ (z) 1 6 49 542 7278 113 824 2 017 881 39 842 934 865 391 422 20 486 717 908
Γ (u) 1 3 13 147 1965 30 979 559 357 11 289 219 250 794 109 6 066 778 627

In the G2W -expansion, it is natural to define [33,35]
the functional Ψ [G, W ], which generalizes equation (18)
and generates the self-energy and the irreducible polar-
ization as follows:

Σ(1, 2) =
δΨ [G, W ]
δG(2, 1)

, Π(1, 2) = −2
δΨ [G, W ]
δW (2, 1)

. (23)

The diagrammatic construction of Ψ is the same as for Φ:
close the skeleton graphs of Σ = iGWΓ [G, W ] with a G
line and divide by the number of G lines that the graph
contains. In d = 0 we have GΣ = zΓ (z); to divide by
the number of G lines that each GΣ-diagram contains,
corresponds to the integral

Ψ(z) =
1
2

∫ z

0

dz′Γ (z′) =
z

2
+

z2

4
+ (2 + �)

z3

3
+ . . . (24)

2.4 u = G2WΓ2-skeleton expansion

The G2W−expansion resums all self-energy and polariza-
tion insertions, and skeleton diagrams of various order in
z result just because of vertex contributions. If vertex di-
agrams are summed as well, each of the self-energy and
the polarization is brought to a unique skeleton diagram
depicted in Figure 1. Vertex diagrams cannot be brought
to a finite collection of skeleton diagrams. We may never-
theless resum vertex insertions in all vertex diagrams, and
enumerate the resulting vertex skeleton diagrams, where
all lines and vertices are resummed.

This is achieved by noting that in a vertex diagram,
each W line ends in two vertices. However, the ver-
tex which the interaction external line is attached to, is
left out (see Fig. 3 for some vertex diagrams). We then
write Γ = 1 + Γγ(u), in terms of the expansion variable
u = iG2WΓ 2 = zΓ 2(z). The factor Γ in front of γ(u)
accounts for the left-out vertex.

The Taylor expansion of γ(u) enumerates all dressed
fully renormalized vertex diagrams. An equation for γ is
obtained from the relation

dγ

du
=

dz

du

d

dz

Γ − 1
Γ

=
1

Γ 2

dΓ/dz

Γ 2 + 2zΓdΓ/dz
, (25)

where we enter dΓ/dz given by equation (21):

u
dγ

du
= (1 − γ)

2�u2(1 − γ)2 + u(1 − γ) − γ

�u2(1 − γ)2 − �uγ(1 − γ) − 2γ
. (26)

(a) (b)

(c) (d)

Fig. 3. All first-order (a) and second-order (b, c, d) vertex
diagrams in u expansion.

This equation is solved with initial condition γ(0) = 0.
The resulting u-expansion for Γ is

Γ (u) = 1 + (Γu) + (1 + 2�)(Γu2) + (7 + 6�)(Γu3)

+ (63 + 74� + 10�2)(Γu4) + . . . (27)

The diagrams of first and second order are shown in Fig-
ure 3 (the next 13 third-order diagrams coincide with
those of QED, drawn in Ref. [28]). This u-expansion repre-
sents the “ultimate” skeleton expansion, where all ingredi-
ents of Hedin’s equations have been renormalized. Indeed,
as apparent in Table 1, the diagram count is smallest in
the u expansion at hand.

2.5 t = (G2W)GW-skeleton expansion

In the GW approximation (Γ = 1), in physical dimen-
sions, Hedin’s equations are a system of ordinary integral
equations for GGW , ΣGW , WGW and ΠGW . It is conceiv-
able that in a near future increased computer power will
allow us to solve these equations in fully self-consistent
GW: this would make the GW approximation the zeroth-
order stage of a subsequent attack of the full many-
body problem, where vertex corrections are included per-
turbatively. The problem of including vertex corrections
in a systematic way is an important target of present-
day research, to overcome several limitations of the non-
conservative GW [1,24,25]. It is therefore of interest to
count the diagrams where g and v lines are dressed (re-
summed) to include all their GW self-energy and polar-
ization insertions.
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Fig. 4. (Color online) Number of vertex diagrams at order
n, divided by the asymptotic expression Bn defined in equa-
tion (32), for the different renormalization schemes realized in
Section 2.1 [x – Eq. (12)], Section 2.2 [y – Eq. (16)], Section 2.5
[t – Eq. (31)], Section 2.3 [z – Eq. (22)], and Section 2.4 [u –
Eq. (27)].

The counting problem is solved in d = 0 by considering
the expansion parameter t = iG2

GW WGW . With simple
algebra, the following two equations for the vertex and
the ratio ZGW (t) = G/GGW are obtained:

tZ2
GW (t)Γ (t) =

[(1 + t)ZGW (t) − 1](1 + �t)
1 − � + �(1 + t)ZGW (t)

, (28)

2t2
dZGW

dt
= (1 − t − 2�t2)

(1 + t)ZGW (t) − 1
1 − � + �(1 + t)ZGW (t)

− t

1 + �t
ZGW (t). (29)

The perturbative solutions are:

ZGW (t) = 1 + t2 + (5 + 3�)t3 + . . . (30)

Γ (t) = 1 + t + 2(2 + �)t2 + (29 + 23�)t3 + . . . (31)

Table 1 lists the total number of these Γ (t) diagrams up
to order n = 10.

3 Asymptotics

To estimate asymptotic behaviors is not simple in the
present approach. However, the topology of many-body
diagrams with two-body interaction is the same as in
relativistic quantum electrodynamics (QED), with a dif-
ference: because of exact particle-antiparticle symmetry,
QED diagrams with loops involving an odd number of
fermion lines cancel (Furry’s theorem [23]). Therefore,

many-body skeleton diagrams grow faster in number than
QED ones.

The functional approach, in the saddle point expan-
sion, is better suited for asymptotics. This problem in
physical dimensions has been studied for QED by sev-
eral authors, based on Lipatov’s powerful method [36,16].
From the tabulated QED asymptotic values [28] in d = 0,
one can infer the leading behavior of many-body ver-
tex skeleton diagrams. Consider the series for the vertex
Γ (θ) =

∑
n Anθn, in one of the renormalization schemes

(θ = x, y, z, t, u) outlined above. We obtain

An = Bn (c0 + c1/n + . . .), Bn = n! 2n n3/2. (32)

In Figure 4 the asymptotic behavior is checked on the first
50 coefficients of the five different vertex skeleton expan-
sions computed in the present work. Indeed, in all expan-
sions, whether bare or renormalized, the number of vertex
diagrams grows with the order n roughly as Bn, thus lead-
ing to divergent power series, like in QED. The renormal-
ization scheme only affects the subleading coefficients ci.
As expected, the “ultimate” u expansion, involving wider
diagram resummations leads to fewer diagrams than all
other “less renormalized” expansions. For large n, the di-
agram count is essentially the same for the z expansion,
including renormalization to both the propagator and the
interaction, and for the t expansion around Hedin’s GW
approximation.

4 Conclusions

The present method for enumerating skeleton diagrams is
based on Hedin’s equations and it is very efficient. We ob-
tain different renormalization schemes by simple changes
of the expansion variable in differential equations that can
be solved by series. The coefficients of these series are
integers that count skeleton diagrams. As expected, the
number of diagrams, whether renormalized or not, grows
factorially with the order.

This work was funded in part by the EU’s 6th Framework Pro-
gramme through the NANOQUANTA Network of Excellence
(NMP4-CT-2004-500198).
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8. M.V. Sadovskĭı, A.A. Timofeev, J. Moscow Phys. Soc. 1,

391 (1991)
9. R.H. McKenzie, D. Scarratt, Phys. Rev. B 54, R12709

(1996)
10. J. Schmalian, D. Pines, B. Stojković, Phys. Rev. B 60, 667
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